
MATHEMATICS 335—PROBABILITY—DECEMBER17–19, 2002

FINAL EXAMINATION SOLUTIONS

• Please complete SIX questions:ALL of 1, 2, 3, and 4, andTWO chosen from 5, 6 and 7.
• If you submit an extra question, I will flip coins to decide what to grade.
• You mustjustify your answers to receive full credit.
• You may leave answers in terms of binomial coefficients, summations, etc., unless the ques-

tion specifies that you simplify your answer. (Of course, it may be necessary to simplify or
perform other algebraic manipulations on an expression in order to answer another part of the
same question.)

1. (18 points) An urn containsn balls, labelled 1, 2, . . . , n, respectively. We removek balls from
the urn (without replacement).
(a) (4 points) LetX be the label of the highest numbered ball removed. FindP(X = m) as

a function ofn, m, andk.

Solution. The total number of ways to choosek balls is
(n

k

)
. If the largest ball chosen

has labelm, then the otherk − 1 balls must be chosen from 1, 2, . . . , m − 1. There are(m−1
k−1

)
ways to do so. Hence, the probability that the largest label on a chosen ball ism is(m−1

k−1

)
/
(n

k

)
for eachm ≤ n. (Notice that this value is 0 whenm < k).

We get as a corollary that
∑n

m=k

(m−1
k−1

) = (n
k

)
, since the sum of all the terms of the

distribution function ofX must be 1.

(b) (5 points) FindE [ X ].

Solution 1. By the definition of expected value, this will be

n∑
m=k

m

(m−1
k−1

)
(n

k

) = 1(n
k

) n∑
m=k

m
(m − 1)!

(k − 1)!(m − k)!
= k(n

k

) n∑
m=k

(m)!

(k)!(m − k)!

= k(n
k

) n∑
m=k

(
m

k

)
= k(n

k

)(
n + 1

k + 1

)
= k(n + 1)!k!(n − k)!

n!(k + 1)!(n − k)!
= k(n + 1)

k + 1
.

That summation step is a bit tricky; notice that the terms correspond the the number of
subsets of{1, . . . , n +1} with k +1 elements and maximal elementm, so this is the same
computation as in part (a), but withn andk both increased by 1.

Solution 2. We use a formula we proved for the expected value of a positive-integer val-
ued random variable, namely that

E [ X ] =
∞∑

x=1

P(X ≥ x) =
∞∑

x=1

(1 − P(X < x)) =
n∑

x=1

(
1 −

(x−1
k

)
(n

k

)
)

= n − 1(n
k

) n∑
x=k+1

(
x − 1

k

)
= n −

( n
k+1

)
(n

k

) = n − n!k!(n − k)!

(k + 1)!(n − k − 1)!n!

= n − n − k

k + 1
= nk + n − n + k

k + 1
= k(n + 1)

k + 1
.

Note thatP(X < x) is as given above, sinceX < x exactly when allk balls are chosen
from those labelled 1, 2, . . . , x − 1. Also, as in Solution 1, we’ve used the identity from
part (a) to perform the summation.



(c) (4 points) Let Y be the sum of the numbers on the k balls removed. Are X and Y inde-
pendent random variables? Justify your answer.

Solution. In general, no. For example, when n > k and X = k, the value of Y is forced to

be 1+2+· · ·+k. Thus P

(
X = m and Y >

k(k + 1)

2

)
= 0 �= P(X = m)P

(
Y >

k(k + 1)

2

)
.

However, it’s worth noting that when n = k, both X and Y are constant (X = k and
Y = k(k+1)

2 ), and thus they are actually independent.

(d) (5 points) Find E[Y ].

Solution 1. Associate a random variable with each ball chosen: Y = Y1 + · · · + Yk . Al-
though the Yi ’s are not independent (no two can have the same value), they are identically
distributed, so E[Y ] = E[Y1] + · · · + E[Yk] = k E[Y1]. But then

E[Y1] =
n∑

i=1

i

(
1

n

)
= n(n + 1)

2n
= n + 1

2
, so E[Y ] = k(n + 1)

2
.

Solution 2. Associate a random variable Zi with each ball, so that Z1 = 1 exactly when
ball i is chosen. For each i, P(Zi = 1) = k/n, so E[Zi ] = k/n. Then Y = Z1 + 2Z2 +
· · · + nZn implies

E[Y ] = E[Z1] + 2E[Z2] + · · · + nE[Zn] = (1 + 2 + · · · + n)

(
k

n

)
= k(n + 1)

2
.

2. (12 points) Let X and Y be independent continuous random variables, each uniform on the
interval (0, 1). Thus,

fX (x) =
{

1 0 ≤ x ≤ 1,

0 otherwise,
and similarly for fY .

(a) (6 points) Find the density of X2 + Y 2.

Solution 1. Because X and Y are independent, the point (X, Y ) is chosen uniformly from
the unit square. We can compute the cumulative distribution of X2 + Y 2 geometrically,
then differentiate that expression.

0 ≤ z ≤ 1

!!!
z

1 ≤ z ≤ 2 !!!
z !!!!!!!!

z - 1

1

When 0 ≤ z ≤ 1, the region satisfying X2 + Y 2 ≤ z is a quarter-circle of radius
√

z.
When 1 ≤ z ≤ 2, the situation is more complicated: we decompose the region into the
union of two right triangles and a circular wedge, as shown above. The triangles each
have area (1/2)

√
z − 1. The circular wedge has radius

√
z. What is the central angle of

the wedge? The angle of each triangle at the origin has cosine 1/
√

z, so the remaining
angle left for the wedge will be π/2 − 2 arccos(1/

√
z). Hence,

P(X2 + Y 2 ≤ z) =




0 z ≤ 0,
π z
4 0 ≤ z ≤ 1,√
z − 1 + z

2

(
π
2 − 2 arccos

(
1√
z

))
1 ≤ z ≤ 2,

1 1 ≤ z.



Differentiation now yields fX2+Y 2(z) =




π
4 0 ≤ z ≤ 1,

π
4 − arccos

(
1√
z

)
1 ≤ z ≤ 2,

0 otherwise

.

Solution 2. First, by the formula we proved about densities of increasing functions of
random variables, the density of X2 is

g(x) =
{

1
2
√

x
0 ≤ √

x ≤ 1

0 otherwise,
and similarly for Y 2.

Because X and Y are independent, so are X2 and Y 2, and convolving gives the density of
X2 + Y 2 as

∫ min(1,z)

max(0,z−1)

g(x)g(z − x) dx =




∫ z
0

1
4
√

x(z−x)
dx 0 ≤ z ≤ 1,∫ 1

z−1
1

4
√

x(z−x)
dx 1 ≤ z ≤ 2,

0 otherwise.

By the lemma below, these reduce to

fX2+Y 2(z) =




1
4

(
arcsin

(
2z
z − 1

)
− arcsin

(
2(0)

z − 1
))

= 1
4 (2 arcsin(1)) = π

4 0 ≤ z ≤ 1,

1
4

(
arcsin

(
2(1)

z − 1
)

− arcsin
(

2(z−1)
1 − 1

))
= 1

2 arcsin
(

2
z − 1

)
1 ≤ z ≤ 2,

0 otherwise.

Lemma.
∫

1

4
√

x(z − x)
dx = 1

4
arcsin

(
2x

x
− 1

)
+ C.

Proof. Of course, we could just differentiate to verify the given formula... but really:
how does one antidifferentiate this expression? Complete the square in the denominator,
substitute, and recognize the resulting form. Here we go.∫
1

4
√

x(z − x)
dx = 1

4

∫
dx√

z2

4 −
(

z2

4 − zx + x2
) = 1

4

∫
dx√

z2

4 − (
x − z

2

)2

= 1

4

∫
2 dx/z√

1 −
(

2x
z − 1

)2
= 1

4

∫
du√

1 − u2
= 1

4
arcsin(u) + C = 1

4
arcsin

(
2x

z
− 1

)
+ C.

Remark. Are the two solutions actually giving the same answer? It’s clear that they do,
except for the case 1 ≤ z ≤ 2. Let α = arccos(1/

√
z); then cos α = 1/

√
z. We can

compute

sin
(π

2
− 2α

)
= cos(2α) = 2 cos2 α − 1 = 2

z
− 1.

But then
π

2
− 2α = arcsin

(
2

z
− 1

)
,

and dividing both sides by 2 shows that our two answers are equivalent. (As is always the
case with inverse trig functions, one should be worried about issues of unique definition—
there are potentially infinitely many values of each angle that work. Those work out well
here, and the reasoning above does suffice.)

(b) (6 points) Find E[X2 + Y 2].

Solution. E[X2 + Y 2] = E[X2] + E[Y 2] =
∫ 1

0
x2 dx +

∫ 1

0
y2 dy = 2

3
.



3. (15 points) A bank accepts rolls of pennies and gives 50 cents credit for each roll to a customer
without counting the pennies. Assume that the rolls customers bring in contain 49 pennies 30
percent of the time, 50 pennies 60 percent of the time, and 51 pennies 10 percent of the time.
(You may assume that the contents of different rolls are independent of each other.)

(a) (3 points) Find the expected value and variance of the amount of money the bank loses
on a typical roll.

Solution. The expected value of the loss per roll, in cents, is (0.3)(1) + (0.6)(0) +
(0.1)(−1) = 0.2 (the loss can be negative!) The variance per roll is (0.3)(12)+(0.6)(02)+
(0.1)(−12) − (0.2)2 = 0.36.

(b) (6 points) Estimate the probability that the bank loses more than 25 cents when 100 rolls
are brought in.

Solution. In 100 rolls, the bank expects to lose 100(0.2) = 20 cents, with a standard
deviation of

√
100(0.36) = 6 cents. Hence the probability that the bank loses more than

25 cents is the probability that we are at most 5/6 ≈ 0.8333 standard deviations above
the mean. By the CLT and the table, that’s about 1 − 0.7967 = 0.2033.

(c) (6 points) How many rolls does the bank need to collect to have a 99 percent chance of a
net loss?

Solution. We want to find the smallest value of n for which

P (Sn > 0) = P

(
Sn − (0.2)n√

(0.36)n
≥ −(0.2)n√

(0.36)n

)
≥ 0.99,

Or, at least, the smallest value of n for which that inequality holds when the exact proba-
bility is replaced by its normal approximation. By the table, the 99 percent chance mark
is at 2.33 standard deviations from the mean; that is,∫ 2.33

−∞
1√
2π

e−x2/2 =
∫ ∞

−2.33

1√
2π

e−x2/2 =̇ 0.9901.

Thus, we solve

−(0.2)n√
(0.36)n

≤ −2.33,

obtaining n ≥ ((3)(2.33))2 = 48.8601. The bank has just about a 99 percent chance of
losing money when it accepts 49 or more rolls.

4. (15 points) Let X1, X2, . . . be independent and identically distributed Poisson(1) random
variables. Thus, for each integer i ≥ 1 and each integer k ≥ 0,

P(Xi = k) = e−1

k!
.

Let Sn = X1 + . . . Xn .

(a) (7 points) Prove that lim
n→∞ P(Sn > 2n) = 0.

Solution. We know that each Xi has expected value 1 and variance 1, so E[Sn] =
V ar [Sn] = n (in fact, Sn is Poisson(n)). By elementary manipulations and Chebyshev’s
inequality,

P(Sn > 2n) = P(Sn − n > n) ≤ P(|Sn − E[Sn]| > n)

≤ Var[Sn]

n2
= n

n2
= 1

n
→ 0.

Since P(Sn > 2n) ≥ 0 (because it’s a probability), we can conclude that, in fact,
limn→∞ P(Sn > 2n) = 0.



(b) (8 points) Prove that lim
n→∞ P(Sn > n + √

n) =
∫ ∞

1

1√
2π

e−x2/2 dx .

Solution. By elementary manipulations and the Central Limit Theorem,

P(Sn > n + √
n) = P

(
Sn − n >

√
n
) = P

(
Sn − E[Sn]√

n
> 1

)

= P

(
Sn − E[Sn]

Var[Sn]
> 1

)
→

∫ ∞

1

1√
2π

e−x2/2 dx .

5. (20 points) [CORRECTED VERSION OF PROBLEM] Let X1, X2, . . . be independent and
identically distributed random variables, each satisfying P(Xi = 1) = P(Xi = −1) = 1/2.
Let Sn = X1 + · · · + Xn .

Let r2n be the probability that exactly one return to 0 occurs before time 2n, AND S2n �= 0,
and let s2n be the probability that S2n = 0 and there is at least one return to 0 before time 2n.

(a) (5 points) Find r2, s2, r4, and s4.

Solution. First, r2 and s2 are both 0, since there is no even time between 0 and 2 at which
a return can take place. Here are the paths for r4 (and thus r4 = 4/16 = 1/4):
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Here are the paths for s4 (and thus s4 = 4/16 = 1/4):
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(b) (15 points) Prove that r2n = s2n for n ≥ 2.

Solution. Consider s2n first. Let 2k be the time of the walk’s first return to 0; we must
have 2 ≤ 2k ≤ 2k − 2. Also, the walk from time 2k to time 2n consists of 2n − 2k steps
that sum to 0, and that are independent of the first 2k steps. Thus

s2n =
n−1∑
k=1

f2ku2n−2k .

Now, for r2n . Let 2k be the time of the single return to 0; hence, 2 ≤ 2k ≤ 2n − 2. The
walk after time 2k must not return to 0 at or before time 2n; hence, it is a segment of
random walk of length 2n − 2k that starts at 0, but does not return to 0. These steps are
independent of the first k steps, so we can write

r2n =
n−1∑
k=1

f2k(1 − ( f2 + f4 + · · · + f2n−2k)) =
n−1∑
k=1

f2ku2n−2k,

where the second equality follows from the given identity (which was on your home-
work).

You may find it helpful to recall that we proved that when u2n = P(S2n = 0) and f2n is the
probability that the first return to 0 occurs at time 2n (thus u0 = 1 and f0 = 0), then

f2 + f4 + · · · + f2n = 1 − u2n for n ≥ 1.



6. (20 points) Consider a circle with M points equally spaced around it, labelled 0, 1, . . . , M −1
clockwise around the circle. A caterpillar starts at point 0. At each time, the caterpillar walks
to the next point clockwise with probability 1/2 and to the next point counterclockwise with
probability 1/2.
(a) (6 points) Find the probability that the caterpillar is at 0 at time t , in terms of M and t .

(Your answer may be left as a summation.)

Solution. First, we pretend that the caterpillar is walking not on a circle, but on a line.
Any path on the circle can be “ lifted” to a path on the line: turn clockwise steps into
up steps, and counterclockwise steps into down steps. The probability that at time t a
caterpillar walking on a line is at position k is 1

2t

( t
t−k

2

)
, as long as (t − k)/2 is an integer,

and zero otherwise. (We showed this in class; the key is that there must be exactly k more
+1’s than -1’s in the sequence).
However, the caterpillar is on a circle. If the caterpillar’s position on the corresponding
walk on the line is any multiple of M , then his position on the circle is 0. Thus, we must
sum:

P(caterpillar at 0 at time t) =
∑

k

1

2t

(
t

t−k
2

)
,

where the sum is taken over all values of k such that M |k and t−k
2 is an integer.

(b) (14 points) [CORRECTED VERSION OF PROBLEM] Show that the probability that
the caterpillar visits all the points of the circle before his first return to 0 is 1/(M − 1).

Solution. At the first step, the caterpillar goes either to 1 (with probability 1/2) or M − 1
(with probability 1/2).
We first consider the case where the caterpillar steps to 1. In order to visit all the states
before returning to 0, it is both necessary and sufficient that the caterpillar reach M − 1
before returning to 0. Necessary, because M − 1 is one of the states we are requiring
that he visit; sufficient, because, in order to go from 1 to M − 1 without hitting 0, the
caterpillar must walk through 2, 3, . . . , M − 2—all the remaining states of the circle.
Hence, we can consider the caterpillar’s sojourn from 1 until the first visit to either 0
(failure) or M − 1 (success) to be a gambler’s ruin situation, with fair odds, maximum
fortune M − 1, and starting with fortune 1. By the result cited below (which we proved
in lecture), the caterpillar has probability 1/(M − 1) of hitting M − 1 befpre hitting 0.
If the caterpillar goes to M −1 in his first step, the same reasoning goes through, with the
points 1 and M − 1 switched throughout. Thus, the total probability that the caterpillar
visits all states before returning to 0 is

1

2

(
1

M − 1

)
+ 1

2

(
1

M − 1

)
= 1

M − 1
.

You may find it helpful to recall that in a “ fair” gambler’s ruin situation (i.e. one in which the
individual bets are equally likely to be won by each player) with maximum fortune M , the
probability that a player starting with k dollars ultimately wins is k/M for 0 ≤ k ≤ M .

7. (20 points) Let X1, X2, . . . and Y1, Y2, . . . be two sequences of independent and identically
distributed random variables, each of which is equally likely to be 1 or −1. Thus, for each
integer i ≥ 1 and each integer j ≥ 1,

P(X1 = 1) = P(Xi = −1) = P(Y j = 1) = P(Y j = −1) = 1/2.

We also assume that the two sequences are independent of each other.

Let Sn = X1 + · · · + Xn and let Tn = Y1 + · · · + Yn . The pair (Sn, Tn) can be viewed as
performing a random walk in the plane as n increases. (We take S0 = 0 and T0 = 0, so the



walk starts at the origin.)

(a) (3 points) Determine all possible values of the pair (S1, T1) and the probability that each
occurs.

Solution. The possible values are (1, 1), (1, −1), (−1, 1), and (−1, −1). Each occurs
with probability 1/4, since, by independence,

P((S1, T1) = (i, j)) = P(S1 = i and T1 = j) = P(X1 = i)P(Y1 = j).

(b) (3 points) Show that this random walk can only return to the origin at even times.

Solution. The pair (Sk, Tk) is equal to (0, 0) when it is true that Sk = 0 and Tk = 0. Since
both of those can only happen when k is even (as we discussed in class: the number of
positive steps must equal the number of negative steps, so the total number of steps must
be even), the ordered pair can only be (0, 0) when k is even.

(c) (6 points) Let w2n = P((S2n, T2n) = (0, 0)). Show that w2n ∼ 1

πn
.

Solution. We proved in class that u2n ∼ 1√
πn

as n → ∞. Because they depend on

disjoint sets of independent underlying steps, S2n and T2n are themselves independent.
Thus,

P ((S2n, T2n = (0, 0)) = P(S2n = 0)P(T2n = 0) ∼ 1√
πn

(
1√
πn

)
= 1

πn
.

(d) (8 points) Is the probability that this walk eventually returns to the origin 1, or is it less
than 1? Justify your answer.

Solution 1. Define u∗
2n , U∗(z), f ∗

2n , and F∗(z) to be this walk’s version of the quantities
and generating functions analogous to those for 1-dimensional random walk (which we
wrote without the stars). Exactly as before, it will be true that

F∗(z) = U∗(z) − 1

U∗(z)
,

so that the probability of eventual return, which is F∗(1), will be equal to 1 if and only if
U∗(1) diverges.
However, in part (c), we showed that u∗

2n ∼ 1
πn , and

∑∞
n=1

1
πn diverges. By the com-

parison test, so must
∑∞

n=1 u∗
2n = U∗(1). Thus, F∗(1) = 1, and this walk returns to the

origin with probability 1.

Solution 2. This walk is actually isomorphic to the two-dimensional random walk we
studied earlier (geometrically, via a rotation through π/4 radians and a magnification
by

√
2). Even though we step in both dimensions at every time (instead of picking one

dimension, then picking a direction in that dimension, as we did earlier), our unit steps are
still all the same length and consist of perpendicular pairs: NE/SW and NW/SE instead
of left/right and up/down.
Thus, the probability that we return to the origin is the same as it was for the 2D RW we
looked at earlier—which is 1.


